B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - APRIL 2013
PH 3504/PH 3502/PH 5501 - ELECTRONICS - I

Date: 29/04/2013
Time: 9:00-12:00

Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL Questions:

(10x2 = 20 marks)

1. State superposition Theorem.
2. What are hybrid parameters? State the drawback of h parameter approach in the design of transistor amplifier.
3. In a transistor circuit, the collector load is $4 \mathrm{~K} \Omega$ and zero signal collector current is 1 mA . Find its operating point if $\mathrm{Vcc}=10 \mathrm{~V}$.
4. Name the different methods of biasing a transistor.
5. State two significant differences between a FET and a BJT.
6. Draw the circuit of a summing amplifier.
7. What is a master slave JK flip flop?
8. Differentiate between multiplexer and demultiplexer.
9. How many flip flops are required to construct a MOD-64 and upto what decimal number can this counter store?
10. What is the major drawback of a ripple counter?

$\underline{\text { PART - B }}$

Answer ANY FOUR Questions:

11. Prove Thevenin's theorem in the case of a two terminal network. Find the open circuit voltage and Thevenin resistance for the two terminal network shown below.

12. With a neat diagram explain the working of a Wein Bridge oscillator.
13. State any least four characteristics of an ideal Op-Amp. Solve the simultaneous equations using Op-Amp. $\quad \mathrm{X}+\mathrm{Y}=5 ; \quad \mathrm{X}-\mathrm{Y}=1$.
14. Simplify into sum of products $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,1,2,3,5,7,8,9,11,14)$ using K-map and draw the logic circuit for the simplified expression.
15. Write a note on the semiconducting memory devices ROM and RAM.

PART C

Answer ANY FOUR questions

($4 \times 12.5=50$ marks $)$
16. (a) Obtain expressions for the input impedance, current gain and voltage gain in terms of hybrid parameters for a transistor in CE arrangement.
(b) For a CE transistor amplifier the h parameters are $\mathrm{h}_{\mathrm{ie}}=1700 \Omega, \mathrm{~h}_{\mathrm{fe}}=38$, $\mathrm{h}_{\mathrm{re}}=1.3 \times 10^{-4}$ and $\mathrm{h}_{\mathrm{oe}}=6 \times 10^{-6} \mathrm{mho}$. Find (i) Input impedance, (ii) Current gain
(iii) Voltage gain, if the ac load is $2 \mathrm{~K} \Omega$.
17. With a neat circuit diagram explain the working of a Class A power amplifier.
18. Describe the construction and operation of a Silicon Controlled Rectifier. Discuss its currentvoltage behaviour and its applications.
19. With the help of necessary logic diagram, truth table and waveforms explain the working of a
(a) clocked RS flip flop
(b) JK flip flop
(6+6.5)
20. With a neat circuit explain the working of a MOD-5 counter. Construct a three stage Johnson counter and explain its truth table.

